Event JSON
{
"id": "0382e12861bf263afaebabcc2247fdb6655b2abbbb975101242cc797c59cff55",
"pubkey": "f6e5f6bc41d8187e776540f170adeab6d0d71bf2f6e396e4a3a73394e20b0e1c",
"created_at": 1728024139,
"kind": 1,
"tags": [
[
"p",
"b4c50e1bc1d7c4e1372d0c767c4705509f070b0f3109447d90cd0eb34a992896",
"wss://relay.mostr.pub"
],
[
"p",
"54eb6579c79124a2a5f21877c0ec4638c2c5ad1ac544f93a1e32785b588fc074",
"wss://relay.mostr.pub"
],
[
"p",
"aee60c58553e013468724cd8473b04f4785cbb8949ed79a6cf643c2ca32f2e93",
"wss://relay.mostr.pub"
],
[
"p",
"f7346eb283902ada9d21c109a93e83128d9f87d8fcfe70ad819b3bf2ad9bce16",
"wss://relay.mostr.pub"
],
[
"e",
"69e24b996a4055d5963b030c95e20ac3c327c6a484172156e85c88b005040412",
"wss://relay.mostr.pub",
"reply"
],
[
"proxy",
"https://mathstodon.xyz/users/oantolin/statuses/113247790020775473",
"activitypub"
]
],
"content": "nostr:npub1knzsux7p6lzwzdedp3m8c3c92z0swzc0xyy5glvse58txj5e9ztqpac73p nostr:npub12n4k27w8jyj29f0jrpmupmzx8rpvttg6c4z0jws7xfu9kky0cp6q8c5dmn de Rham cohomology works half the time for this question! For SO(n) with n=2k+1 you have exterior generators in degrees 3, 7, ..., 4k-1; and the slightly different pattern you mentioned for even n is that if n=2k+2 then you have exterior generators in those same degrees 3, 7, ..., 4k-1 and an additional exterior generator in degree 2k+1. This means that when n is odd SO(n+1) has the same de Rham cohomology ring as SO(n)×S^n! (And when n is even the rings are non-isomorphic so the argument does work in those cases.)\n\nWhen n=1 or 3, then SO(n+1) really is diffeomorphism to SO(n)×S^n, so I'm not sure what to expect for odd n.",
"sig": "ace864a717e130180b3287cef3bc417c9b6f2964c50062a3dd1251c3d766faed74b1f2ca4f12e96b2173d87dfa83c4d6b190dc10f4b6b0a4b23a8f20ba41c724"
}