Why Nostr? What is Njump?
2025-02-28 04:29:05

YakiHonne on Nostr: A new algorithm for secure private messaging—Double Ratchet🔒, enables ...

A new algorithm for secure private messaging—Double Ratchet🔒, enables communication on Nostr without revealing metadata and ensures message security even if the main key is compromised🔑. Learn about what Double Ratchet is and how it works. Check out the article, written by

NIP-117

The Double Ratchet Algorithm

The Double Ratchet is a key rotation algorithm for secure private messaging.

It allows us to 1) communicate on Nostr without revealing metadata (who you are communicating with and when), and 2) keep your message history and future messages safe even if your main Nostr key is compromised.

Additionally, it enables disappearing messages that become undecryptable when past message decryption keys are discarded after use.

See also: NIP-118: Nostr Double Ratchet Invites

Overview

“Double ratchet” means we use 2 “ratchets”: cryptographic functions that can be rotated forward, but not backward: current keys can be used to derive next keys, but not the other way around.

Ratchet 1 uses Diffie-Hellman (DH) shared secrets and is rotated each time the other participant acknowledges a new key we have sent along with a previous message.

Ratchet 2 generates encryption keys for each message. It rotates after every message, using the previous message’s key as input (and the Ratchet 1 key when it rotates). This process ensures forward secrecy for consecutive messages from the same sender in between Ratchet 1 rotations.

Nostr implementation

We implement the Double Ratchet Algorithm on Nostr similarly to Signal’s Double Ratchet with header encryption, but encrypting the message headers with NIP-44 conversation keys instead of symmetric header keys.

Ratchet 1 keys are standard Nostr keys. In addition to encryption, they are also used for publishing and subscribing to messages on Nostr. As they are rotated and not linked to public Nostr identities, metadata privacy is preserved.

Nostr event format

Message

Outer event

{
  kind: 1060,
  content: encryptedInnerEvent,
  tags: [["header", encryptedHeader]],
  pubkey: ratchetPublicKey,
  created_at,
  id,
  sig
}

We subscribe to Double Ratchet events based on author public keys which are ephemeral — not used for other purposes than the Double Ratchet session. We use the regular event kind 1060 to differentiate it from other DM kinds, retrieval of which may be restricted by relays.

The encrypted header contains our next nostr public key, our previous sending chain length and the current message number.

Inner event

Inner events must be NIP-59 Rumors (unsigned Nostr events) allowing plausible deniability.

With established Nostr event kinds, clients can implement all kinds of features, such as replies, reactions, and encrypted file sharing in private messages.

Direct message and encrypted file messages are defined in NIP-17.

Algorithm

Signal’s Double Ratchet with header encryption document is a comprehensive description and explanation of the algorithm.

In this NIP, the algorithm is only described in code, in order to highlight differences to the Signal implementation.

External functions

We use the following Nostr functions (NIP-01):

  • generateSecretKey() for creating Nostr private keys
  • finalizeEvent(partialEvent, secretKey) for creating valid Nostr events with pubkey, id and signature

We use NIP-44 functions for encryption:

  • nip44.encrypt
  • nip44.decrypt
  • nip44.getConversationKey

NIP-59:

  • createRumor

Key derivation function:

export function kdf(
  input1: Uint8Array,
  input2: Uint8Array = new Uint8Array(32),
  numOutputs: number = 1
): Uint8Array[] {
  const prk = hkdf_extract(sha256, input1, input2);

  const outputs: Uint8Array[] = [];
  for (let i = 1; i <= numOutputs; i++) {
    outputs.push(hkdf_expand(sha256, prk, new Uint8Array([i]), 32));
  }
  return outputs;
}

Session state

With this information you can start or continue a Double Ratchet session. Save it locally after each sent and received message.

interface SessionState {
  theirCurrentNostrPublicKey?: string;
  theirNextNostrPublicKey: string;

  ourCurrentNostrKey?: KeyPair;
  ourNextNostrKey: KeyPair;

  rootKey: Uint8Array;
  receivingChainKey?: Uint8Array;
  sendingChainKey?: Uint8Array;

  sendingChainMessageNumber: number;
  receivingChainMessageNumber: number;
  previousSendingChainMessageCount: number;

  // Cache of message & header keys for handling out-of-order messages
  // Indexed by Nostr public key, which you can use to resubscribe to unreceived messages
  skippedKeys: {
    [pubKey: string]: {
      headerKeys: Uint8Array[];
      messageKeys: { [msgIndex: number]: Uint8Array };
    };
  };
}

Initialization

Alice is the chat initiator and Bob is the recipient. Ephemeral keys were exchanged earlier.

static initAlice(
  theirEphemeralPublicKey: string,
  ourEphemeralNostrKey: KeyPair,
  sharedSecret: Uint8Array
) {
  // Generate ephemeral key for the next ratchet step
  const ourNextNostrKey = generateSecretKey();

  // Use ephemeral ECDH to derive rootKey and sendingChainKey
  const [rootKey, sendingChainKey] = kdf(
    sharedSecret,
    nip44.getConversationKey(ourEphemeralNostrKey.private, theirEphemeralPublicKey),
    2
  );

  return {
    rootKey,
    theirNextNostrPublicKey: theirEphemeralPublicKey,
    ourCurrentNostrKey: ourEphemeralNostrKey,
    ourNextNostrKey,
    receivingChainKey: undefined,
    sendingChainKey,
    sendingChainMessageNumber: 0,
    receivingChainMessageNumber: 0,
    previousSendingChainMessageCount: 0,
    skippedKeys: {},
  };
}

static initBob(
  theirEphemeralPublicKey: string,
  ourEphemeralNostrKey: KeyPair,
  sharedSecret: Uint8Array
) {
  return {
    rootKey: sharedSecret,
    theirNextNostrPublicKey: theirEphemeralPublicKey,
    // Bob has no ‘current’ key at init time — Alice will send to next and trigger a ratchet step
    ourCurrentNostrKey: undefined,
    ourNextNostrKey: ourEphemeralNostrKey,
    receivingChainKey: undefined,
    sendingChainKey: undefined,
    sendingChainMessageNumber: 0,
    receivingChainMessageNumber: 0,
    previousSendingChainMessageCount: 0,
    skippedKeys: {},
  };
}

Sending messages

sendEvent(event: Partial<UnsignedEvent>) {
  const innerEvent = nip59.createRumor(event)
  const [header, encryptedData] = this.ratchetEncrypt(JSON.stringify(innerEvent));

  const conversationKey = nip44.getConversationKey(this.state.ourCurrentNostrKey.privateKey, this.state.theirNextNostrPublicKey);
  const encryptedHeader = nip44.encrypt(JSON.stringify(header), conversationKey);

  const outerEvent = finalizeEvent({
    content: encryptedData,
    kind: MESSAGE_EVENT_KIND,
    tags: [["header", encryptedHeader]],
    created_at: Math.floor(now / 1000)
  }, this.state.ourCurrentNostrKey.privateKey);

  // Publish outerEvent on Nostr, store inner locally if needed
  return {outerEvent, innerEvent};
}

ratchetEncrypt(plaintext: string): [Header, string] {
  // Rotate sending chain key
  const [newSendingChainKey, messageKey] = kdf(this.state.sendingChainKey!, new Uint8Array([1]), 2);
  this.state.sendingChainKey = newSendingChainKey;
  const header: Header = {
    number: this.state.sendingChainMessageNumber++,
    nextPublicKey: this.state.ourNextNostrKey.publicKey,
    previousChainLength: this.state.previousSendingChainMessageCount
  };
  return [header, nip44.encrypt(plaintext, messageKey)];
}

Receiving messages

handleNostrEvent(e: NostrEvent) {
  const [header, shouldRatchet, isSkipped] = this.decryptHeader(e);

  if (!isSkipped) {
    if (this.state.theirNextNostrPublicKey !== header.nextPublicKey) {
      // Received a new key from them
      this.state.theirCurrentNostrPublicKey = this.state.theirNextNostrPublicKey;
      this.state.theirNextNostrPublicKey = header.nextPublicKey;
      this.updateNostrSubscriptions()
    }

    if (shouldRatchet) {
      this.skipMessageKeys(header.previousChainLength, e.pubkey);
      this.ratchetStep(header.nextPublicKey);
    }
  }

decryptHeader(event: any): [Header, boolean, boolean] {
  const encryptedHeader = event.tags[0][1];
  if (this.state.ourCurrentNostrKey) {
    const conversationKey = nip44.getConversationKey(this.state.ourCurrentNostrKey.privateKey, event.pubkey);
    try {
      const header = JSON.parse(nip44.decrypt(encryptedHeader, conversationKey)) as Header;
      return [header, false, false];
    } catch (error) {
      // Decryption with currentSecret failed, try with nextSecret
    }
  }

  const nextConversationKey = nip44.getConversationKey(this.state.ourNextNostrKey.privateKey, event.pubkey);
  try {
    const header = JSON.parse(nip44.decrypt(encryptedHeader, nextConversationKey)) as Header;
    return [header, true, false];
  } catch (error) {
    // Decryption with nextSecret also failed
  }

  const skippedKeys = this.state.skippedKeys[event.pubkey];
  if (skippedKeys?.headerKeys) {
    // Try skipped header keys
    for (const key of skippedKeys.headerKeys) {
      try {
        const header = JSON.parse(nip44.decrypt(encryptedHeader, key)) as Header;
        return [header, false, true];
      } catch (error) {
        // Decryption failed, try next secret
      }
    }
  }

  throw new Error("Failed to decrypt header with current and skipped header keys");
}

ratchetDecrypt(header: Header, ciphertext: string, nostrSender: string): string {
  const plaintext = this.trySkippedMessageKeys(header, ciphertext, nostrSender);
  if (plaintext) return plaintext;

  this.skipMessageKeys(header.number, nostrSender);

  // Rotate receiving key
  const [newReceivingChainKey, messageKey] = kdf(this.state.receivingChainKey!, new Uint8Array([1]), 2);
  this.state.receivingChainKey = newReceivingChainKey;
  this.state.receivingChainMessageNumber++;

  return nip44.decrypt(ciphertext, messageKey);
}

ratchetStep(theirNextNostrPublicKey: string) {
  this.state.previousSendingChainMessageCount = this.state.sendingChainMessageNumber;
  this.state.sendingChainMessageNumber = 0;
  this.state.receivingChainMessageNumber = 0;
  this.state.theirNextNostrPublicKey = theirNextNostrPublicKey;

  // 1st step yields the new conversation key they used
  const conversationKey1 = nip44.getConversationKey(this.state.ourNextNostrKey.privateKey, this.state.theirNextNostrPublicKey!);
  // and our corresponding receiving chain key
  const [theirRootKey, receivingChainKey] = kdf(this.state.rootKey, conversationKey1, 2);
  this.state.receivingChainKey = receivingChainKey;

  // Rotate our Nostr key
  this.state.ourCurrentNostrKey = this.state.ourNextNostrKey;
  const ourNextSecretKey = generateSecretKey();
  this.state.ourNextNostrKey = {
    publicKey: getPublicKey(ourNextSecretKey),
    privateKey: ourNextSecretKey
  };

  // 2nd step yields the new conversation key we'll use
  const conversationKey2 = nip44.getConversationKey(this.state.ourNextNostrKey.privateKey, this.state.theirNextNostrPublicKey!);
  // And our corresponding sending chain key
  const [rootKey, sendingChainKey] = kdf(theirRootKey, conversationKey2, 2);
  this.state.rootKey = rootKey;
  this.state.sendingChainKey = sendingChainKey;
}

skipMessageKeys(until: number, nostrSender: string) {
  if (this.state.receivingChainMessageNumber + MAX_SKIP < until) {
    throw new Error("Too many skipped messages");
  }

  if (!this.state.skippedKeys[nostrSender]) {
    this.state.skippedKeys[nostrSender] = {
      headerKeys: [],
      messageKeys: {}
    };

    if (this.state.ourCurrentNostrKey) {
      const currentSecret = nip44.getConversationKey(this.state.ourCurrentNostrKey.privateKey, nostrSender);
      this.state.skippedKeys[nostrSender].headerKeys.push(currentSecret);
    }
    const nextSecret = nip44.getConversationKey(this.state.ourNextNostrKey.privateKey, nostrSender);
    this.state.skippedKeys[nostrSender].headerKeys.push(nextSecret);
  }

  while (this.state.receivingChainMessageNumber < until) {
    const [newReceivingChainKey, messageKey] = kdf(this.state.receivingChainKey!, new Uint8Array([1]), 2);
    this.state.receivingChainKey = newReceivingChainKey;
    this.state.skippedKeys[nostrSender].messageKeys[this.state.receivingChainMessageNumber] = messageKey;
    this.state.receivingChainMessageNumber++;
  }
}

trySkippedMessageKeys(header: Header, ciphertext: string, nostrSender: string): string | null {
  const skippedKeys = this.state.skippedKeys[nostrSender];
  if (!skippedKeys) return null;

  const messageKey = skippedKeys.messageKeys[header.number];
  if (!messageKey) return null;

  delete skippedKeys.messageKeys[header.number];

  if (Object.keys(skippedKeys.messageKeys).length === 0) {
    delete this.state.skippedKeys[nostrSender];
  }

  return nip44.decrypt(ciphertext, messageKey);
}
Author Public Key
npub1yzvxlwp7wawed5vgefwfmugvumtp8c8t0etk3g8sky4n0ndvyxesnxrf8q