Event JSON
{
"id": "8f984a60b10394aa34c0f55aadfe076df0c7f4ca88f8ddb41044331f9508ed96",
"pubkey": "e3881f1cf90cdfdfc0174982b54259d75fc0261f9978ae8e4b0d9223eaebf86c",
"created_at": 1724899315,
"kind": 1,
"tags": [
[
"t",
"ml"
],
[
"t",
"genngame"
],
[
"t",
"ai"
],
[
"t",
"difussion"
],
[
"t",
"indiedev"
],
[
"t",
"videogames"
],
[
"proxy",
"https://oldbytes.space/@haitchfive/113043001570771574",
"web"
],
[
"t",
"gamedev"
],
[
"t",
"videogame"
],
[
"imeta",
"url https://assets.oldbytes.space/assets.oldbytes.space/media_attachments/files/113/042/982/763/099/182/original/2d5f3c44cd21487f.png",
"m image/png"
],
[
"t",
"difussionmodel"
],
[
"proxy",
"https://oldbytes.space/users/haitchfive/statuses/113043001570771574",
"activitypub"
],
[
"L",
"pink.momostr"
],
[
"l",
"pink.momostr.activitypub:https://oldbytes.space/users/haitchfive/statuses/113043001570771574",
"pink.momostr"
],
[
"-"
]
],
"content": "The implication of GameNGen is that, if a difussion model can learn to be a Doom engine, it can learn to behave and present like any other type of graphically interactive software. \n\nBased on this method, it's not impossible to think that one could create a videogame without any programming at all, but providing all the necessary input data, imagery, and animated behaviour for a model to learn.\n\nMind you, with enough patience, you could draw it all on a notebook.\n\n#GenNGame #ai #ml #difussion #DifussionModel #gamedev #indiedev #videogame #videogames\nhttps://assets.oldbytes.space/assets.oldbytes.space/media_attachments/files/113/042/982/763/099/182/original/2d5f3c44cd21487f.png\n",
"sig": "da175f5f6f1a1a2fd0b310b8c9d859cc6edf67389072cf513fe6c69c97ff7a3e2a375409a7c2fe3e53198c4fda2c20675d7230fd15821c717cd79851e1ed1d3b"
}