Event JSON
{
"id": "95e33a2d431b6b01d7e9eb4d4e5676538eea11a1801e1d733793ecff93ed7667",
"pubkey": "456108b0f4f4455ef20f22e008e5ddb9701bda81a9d299a454b84f75c3059b64",
"created_at": 1744238676,
"kind": 1,
"tags": [
[
"p",
"b4c50e1bc1d7c4e1372d0c767c4705509f070b0f3109447d90cd0eb34a992896",
"wss://relay.mostr.pub"
],
[
"p",
"f7346eb283902ada9d21c109a93e83128d9f87d8fcfe70ad819b3bf2ad9bce16",
"wss://relay.mostr.pub"
],
[
"e",
"ef9c298b1e9468de3e3a9e11a8b6488268aff7fe92568106d0277945ce009235",
"wss://relay.mostr.pub",
"reply"
],
[
"proxy",
"https://mathstodon.xyz/users/Tom_Drummond/statuses/114310425915292688",
"activitypub"
],
[
"client",
"Mostr",
"31990:6be38f8c63df7dbf84db7ec4a6e6fbbd8d19dca3b980efad18585c46f04b26f9:mostr",
"wss://relay.mostr.pub"
]
],
"content": "nostr:nprofile1qy2hwumn8ghj7un9d3shjtnddaehgu3wwp6kyqpqknzsux7p6lzwzdedp3m8c3c92z0swzc0xyy5glvse58txj5e9ztqaufa4k Not incidentally, this is equivalent to expressing the shape in terms of 0 and first order spherical harmonics which also describe s and p orbitals, while higher order harmonics express f orbital, etc. Spherical harmonics arise as a basis for solutions to the wave equation on a sphere - and can be expressed as homogeneous harmonic polynomials of increasing order evaluated on the unit sphere - behaving like a fourier series (indeed spherical harmonics on S1 are exactly a fourier series).",
"sig": "9e1f9505b71a28ad119dca4103dab38e41eccf7abaf69ffb400f711337ff30cad7ab2f8461e69e48d7ff51e376fb591160f3654c05d06dec9ce29e10cdddb841"
}