Event JSON
{
"id": "d9acb2eea682217de7ee37755266a1037e9f05c9425de1f5873c8a2436248e22",
"pubkey": "563821004c3e4e4f4fbef74a2657db3299a0e71a78214bf97db0b6ca05fb73d3",
"created_at": 1714129621,
"kind": 1,
"tags": [
[
"proxy",
"https://mathstodon.xyz/@gregeganSF/112337198859626121",
"web"
],
[
"p",
"563821004c3e4e4f4fbef74a2657db3299a0e71a78214bf97db0b6ca05fb73d3"
],
[
"p",
"2db431c8bab241109ce32e5b373c722c601c136c4ad4eb847478105046a16dc9"
],
[
"p",
"9a6a1a8eefd0b53d7e0c966ab35bd904151246f03b1be98fa0d2d0eeb4940320"
],
[
"e",
"94db06e1f52e5fe67b57ca37f0abcb4f254c58d0bdd6b0a667e733f90099fc85",
"",
"reply",
"9a6a1a8eefd0b53d7e0c966ab35bd904151246f03b1be98fa0d2d0eeb4940320"
],
[
"e",
"f6229c8b793bfee46a674f42534461cb9760b976045fe98c6307ba61711fc2fe",
"",
"root",
"9a6a1a8eefd0b53d7e0c966ab35bd904151246f03b1be98fa0d2d0eeb4940320"
],
[
"imeta",
"url https://media.mathstodon.xyz/media_attachments/files/112/337/099/950/335/253/original/fa2acb4b4eebbfad.mp4",
"m video/mp4"
],
[
"proxy",
"https://mathstodon.xyz/users/gregeganSF/statuses/112337198859626121",
"activitypub"
],
[
"L",
"pink.momostr"
],
[
"l",
"pink.momostr.activitypub:https://mathstodon.xyz/users/gregeganSF/statuses/112337198859626121",
"pink.momostr"
],
[
"-"
]
],
"content": "Here’s a construction of a portion of the honeycomb that I think can be extended indefinitely.\n\nThe black point at the centre corresponds to the identity matrix I.\n\nThe 6 cyan and 6 yellow points are the 12 nearest neighbours of I in 𝔥₂(𝔼):\n\n\\[\\left(\n\\begin{array}{cc}\n 2 \u0026 (-\\omega )^k \\\\\n (-\\omega )^{6-k} \u0026 1 \\\\\n\\end{array}\n\\right)\\]\n\nand\n\n\\[\\left(\n\\begin{array}{cc}\n 1 \u0026 (-\\omega )^k \\\\\n (-\\omega )^{6-k} \u0026 2 \\\\\n\\end{array}\n\\right)\\] \n\nwhere k=0,...,5.\n\nGrey lines join all nearest neighbours among these 13 points.\n\nThe 6 blue vertices that form a hexagon centred on the black point are all equidistant from the black point, one magenta point and one yellow point. They are:\n\n\\[\\frac{1}{\\sqrt{6}}\\left(\n\\begin{array}{cc}\n 3 \u0026 (1-\\omega ) (-\\omega )^k \\\\\n (1-\\omega ) (-\\omega )^{5-k} \u0026 3 \\\\\n\\end{array}\n\\right)\\]\n\nWe then map that central hexagon to 12 others, using Lorentz transformations that take I to each of its 12 nearest neighbours in 𝔥₂(𝔼), and that take one hexagon edge to the opposite edge.\n\nUsing the action: \n\nA ↦ gAg*\n\nthe 12 matrices we use for g are:\n\n\\[\\left(\n\\begin{array}{cc}\n 1 \u0026 (-\\omega )^k \\\\\n 0 \u0026 1 \\\\\n\\end{array}\n\\right)\\]\n\nand\n\n\\[\\left(\n\\begin{array}{cc}\n 1 \u0026 0 \\\\\n (-\\omega )^{6-k} \u0026 1 \\\\\n\\end{array}\n\\right)\\]\nhttps://media.mathstodon.xyz/media_attachments/files/112/337/099/950/335/253/original/fa2acb4b4eebbfad.mp4\n",
"sig": "0f4e451797308389a7c47522ca0ffe66c569f79a264571be1934866581dba6dbf2ee65874e816eead9f8813d5acd3650bf8850ef74e973d4238bc997d645cdbb"
}