Event JSON
{
"id": "d6bd5dca4209650028a9ad67764ac60325945555965ca2fe9975044eb124f2d2",
"pubkey": "d9c6f25fb3b416b6554f7e571a1b927aa0e01d90a49f592e3e0ec74bd0986bba",
"created_at": 1733208206,
"kind": 1,
"tags": [
[
"t",
"gis"
],
[
"t",
"spatial"
],
[
"t",
"atmosphericcorrection"
],
[
"t",
"illuminationcondition"
],
[
"t",
"landcover"
],
[
"t",
"modelcomparison"
],
[
"t",
"TimeSeries"
],
[
"t",
"topographiccorrection"
],
[
"t",
"remotesensing"
],
[
"t",
"comparasion"
],
[
"t",
"topographic"
],
[
"t",
"correction"
],
[
"t",
"ndvi"
],
[
"t",
"Forest"
],
[
"t",
"vegetation"
],
[
"t",
"model"
],
[
"t",
"modeling"
],
[
"t",
"spatialanalyis"
],
[
"t",
"accuracy"
],
[
"t",
"forestcover"
],
[
"t",
"Russia"
],
[
"t",
"Georgia"
],
[
"t",
"caucasusmountains"
],
[
"t",
"spatiotemporal"
],
[
"t",
"landsat"
],
[
"t",
"elevation"
],
[
"t",
"dem"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/587/523/801/322/965/original/3bfbe0efdb097f4b.jpg",
"m image/jpeg",
"dim 1691x1766",
"blurhash UBP%O.~q_3M{D%xuRjxut7WBt7ayRjofWBM{"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/587/523/810/089/968/original/0349b6e3edf31890.jpg",
"m image/jpeg",
"dim 3008x2000",
"blurhash UcH{=|xtM{ayYRWBj?j[9GbHofj[R,bHWBay"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/587/524/084/449/278/original/d51771fb6a781f57.jpg",
"m image/jpeg",
"dim 2588x3205",
"blurhash UQJk[XEb?IMy9Xtks:jJ~ExvNFoN0JNFofk8"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/587/524/174/644/700/original/103e6bd0b3300ee4.jpg",
"m image/jpeg",
"dim 2635x3147",
"blurhash UB4;S^u0QXiPOjX|X5d^l^nmpGX4Ped]r0ko"
],
[
"proxy",
"https://techhub.social/users/GregCocks/statuses/113587533010573557",
"activitypub"
]
],
"content": "Integrated Topographic Corrections Improve Forest Mapping Using Landsat Imagery\n--\nhttps://doi.org/10.1016/j.jag.2022.102716 \u003c-- shared 2022 paper\n--\n“HIGHLIGHTS:\n • [They] evaluated the impacts of topographic correction on forest mapping in the mountains.\n • The enhanced C-correction and the physical model reduced topographic effects.\n • The corrected Landsat imagery time series resulted in higher accuracy.\n • Terrain information improved classification but not as much as topographic correction.\n • [They] recommend using topographic correction for forest cover mapping...\"\n#GIS #spatial #AtmosphericCorrection #IlluminationCondition #LandCover #ModelComparison #TimeSeries #TopographicCorrection #remotesensing #comparasion #topographic #correction #NDVI #forest #vegetation #model #modeling #spatialanalyis #accuracy #forestcover #Russia #Georgia #CaucasusMountains #spatiotemporal #landsat #elevation #DEM\n\nhttps://files.techhub.social/media_attachments/files/113/587/523/801/322/965/original/3bfbe0efdb097f4b.jpg\nhttps://files.techhub.social/media_attachments/files/113/587/523/810/089/968/original/0349b6e3edf31890.jpg\nhttps://files.techhub.social/media_attachments/files/113/587/524/084/449/278/original/d51771fb6a781f57.jpg\nhttps://files.techhub.social/media_attachments/files/113/587/524/174/644/700/original/103e6bd0b3300ee4.jpg",
"sig": "523896787e1b51bae1ae132cb687f45e93001785572918cba6572ccb4b9ce7f9136eb821fc7d2d48db064f2147e7f9fde18da77437167a3cd75a617fbcc31041"
}