Event JSON
{
"id": "503bdbf19ab07b5731c982de53e4777303b0150ca8825026920d8ff6c79548f6",
"pubkey": "456108b0f4f4455ef20f22e008e5ddb9701bda81a9d299a454b84f75c3059b64",
"created_at": 1731881280,
"kind": 1,
"tags": [
[
"p",
"c176a55ed8a5f4240dd6154f81df0176998ba869d48bef575c47e33c9207d4b2",
"wss://relay.mostr.pub"
],
[
"p",
"3422fcbc32f333fb2d3481b2e981258af8a0b571869cbfe93c42962410e232ef",
"wss://relay.mostr.pub"
],
[
"e",
"281deba7395c9a2086d294735bf3a7a2a6ecfbf2b98cced356f05b116c98bdf7",
"wss://relay.mostr.pub",
"reply"
],
[
"proxy",
"https://mathstodon.xyz/users/Tom_Drummond/statuses/113500571568326323",
"activitypub"
]
],
"content": "nostr:nprofile1qy2hwumn8ghj7un9d3shjtnddaehgu3wwp6kyqpqc9m22hkc5h6zgrwkz48crhcpw6vch2rf6j97746ugl3neys86jeqcr59k6 I used a similar trick in my code to compute Hausdorff dimension; this computes all pairwise distances using the matrix mult tensorcores and so only needs the upper triangular part of the result - which again is never materialized in RAM - but is used immediately for the dimension calculation.",
"sig": "ec54795e82a8558a80050cdc6291a4707e00f33f0f9b8181345d2a4ebe652b4fea818bc2cfa1e03b4a7f47335465a5e9296f7cd4e48ef9d143819141b8928c37"
}