Event JSON
{
"id": "53d32548feabf1381b85a374cf8e3cabfe73d36907d513548b5632c06384d184",
"pubkey": "456108b0f4f4455ef20f22e008e5ddb9701bda81a9d299a454b84f75c3059b64",
"created_at": 1744687744,
"kind": 1,
"tags": [
[
"p",
"c176a55ed8a5f4240dd6154f81df0176998ba869d48bef575c47e33c9207d4b2",
"wss://relay.mostr.pub"
],
[
"p",
"3422fcbc32f333fb2d3481b2e981258af8a0b571869cbfe93c42962410e232ef",
"wss://relay.mostr.pub"
],
[
"e",
"e770c2291945668ad1693c76b3171afc5ee5dbfb5de9cd664ea1007f26b83136",
"wss://relay.mostr.pub",
"reply"
],
[
"proxy",
"https://mathstodon.xyz/users/Tom_Drummond/statuses/114339855997924915",
"activitypub"
],
[
"client",
"Mostr",
"31990:6be38f8c63df7dbf84db7ec4a6e6fbbd8d19dca3b980efad18585c46f04b26f9:mostr",
"wss://relay.mostr.pub"
]
],
"content": "nostr:nprofile1qy2hwumn8ghj7un9d3shjtnddaehgu3wwp6kyqpqc9m22hkc5h6zgrwkz48crhcpw6vch2rf6j97746ugl3neys86jeqcr59k6 Another way I have used to get at the exponential map when I'm teaching is the series \\( \\exp(x) = \\lim_{n\\to\\infty} \\left( I+\\tfrac{x}{n} \\right)^n\\). We're still working embedded in GL(n), but the intuition is that if \\( x \\) is in the tangent space at \\( I \\) then \\( I+\\tfrac{x}{n} \\) converges onto the group manifold as \\( n\\to\\infty \\). Then raising this group element to some power gives us a group element back by closure.\n\nI admit this is still much less elegant than defining in terms of a derivation but it seems less like cheating to me... whereas the Taylor series approach does feel like pulling a rabbit from a hat.",
"sig": "9cdada442dad932f1e982ccd2625c06a6f26a502a8b5fe3076fe9e539112f1554624a38517d1965f85f5ab2ac5628f77424d77885567ab077f700ff33a29ba49"
}