Event JSON
{
"id": "f222ff76c50624f1717687ce2ea9b93a29a01e838c75c1db9ebba0618f9d7d80",
"pubkey": "ced93675c4e549a597a395ec9a2bbbcebc8407a46a11de4fad1fb7f8bd62b061",
"created_at": 1729790682,
"kind": 1,
"tags": [
[
"p",
"ac5d6c3af99addf1dda99d03551ec005416e6d5d77d5971bca819df127669450",
"wss://nostr.sprovoost.nl"
],
[
"p",
"72930c2b5e3f041aed8d89dc76d188131f86a3afa41a10763f056a112f71554e",
"wss://nostr.sprovoost.nl"
],
[
"e",
"7069c89a2e784ed823bbdd2bf020d19a197c3ef98897cf72afc2e854373ca2fe",
"wss://nostr.sprovoost.nl",
"reply"
],
[
"proxy",
"https://mastodon.nl/users/Jigsaw_You/statuses/113363562169374974",
"activitypub"
]
],
"content": "nostr:npub143wkcwhentwlrhdfn5p428kqq4qkum2awl2ewx72sxwlzfmxj3gqlh00vw Accuracy is not always a good measure for evaluating classification models, especially when dealing with (very) imbalanced datasets. 😉 Any details on that: cancer vs no cancer? Other metrics? F1 score? Phi score?",
"sig": "890a30de6626ae2d6d4262f81b1ddc5b1474eb1d00b81b059048aec5de554d05fb3df060c468fa1198f5dcb7c0405259c61602c69c7410b3c060103fed7e477b"
}