Diffgeometer1 on Nostr: Consider the Clifford algebra \(C_2\) associated to the standard inner product on ...
Consider the Clifford algebra \(C_2\) associated to the standard inner product on \(\mathbb{R}^2\). Let \(e_1\), \(e_2\) be the standard basis on \(\mathbb{R}^2\). Then\[1,e_1,e_2,e_1e_2\]is a basis of \(C_2\) where the product is given by\[e_i^2=1,~e_1e_2=-e_2e_2\]A minimal left ideal \(I\) of \(C_2\) is spanned by\[1+e_1,~e_2-e_1e_2\]
In particular, \(I\) is an irreducible module over \(C_2\). If \(X\in I\), is it correct to call \(X\) a spinor?
Published at
2025-01-12 17:21:48Event JSON
{
"id": "f81bc9ac23c5c386f89774ff2984fb2a9681f6529dd174127f6a37e36cfe5cda",
"pubkey": "aee60c58553e013468724cd8473b04f4785cbb8949ed79a6cf643c2ca32f2e93",
"created_at": 1736702508,
"kind": 1,
"tags": [
[
"proxy",
"https://mathstodon.xyz/users/Diffgeometer1/statuses/113816535574724170",
"activitypub"
]
],
"content": "Consider the Clifford algebra \\(C_2\\) associated to the standard inner product on \\(\\mathbb{R}^2\\). Let \\(e_1\\), \\(e_2\\) be the standard basis on \\(\\mathbb{R}^2\\). Then\\[1,e_1,e_2,e_1e_2\\]is a basis of \\(C_2\\) where the product is given by\\[e_i^2=1,~e_1e_2=-e_2e_2\\]A minimal left ideal \\(I\\) of \\(C_2\\) is spanned by\\[1+e_1,~e_2-e_1e_2\\]\nIn particular, \\(I\\) is an irreducible module over \\(C_2\\). If \\(X\\in I\\), is it correct to call \\(X\\) a spinor?",
"sig": "000dbed54af9727ac1a92b545812cbccf8b3cb82690007a9c9af0096e45eaafb1d0dee2622e423f58b0d30e781eecdb0e8cdccc7aceb94b74c565aabf4c15271"
}