michabbb on Nostr: š #PymuPDF4llm revolutionizes #PDFOfTheDay data extraction for #LLM applications: ...
š #PymuPDF4llm revolutionizes #PDFOfTheDay data extraction for #LLM applications:
š Extracts structured text, tables, and images from PDFs, converting them to clean markdown format for optimal #AI processing
š ļø Features include:
- Word-by-word extraction capability
- Custom image format & DPI settings
- Table conversion to CSV/JSON
- Page chunking options
š» Key technical benefits:
- Simple pip installation
- #Python integration
- Full #opensource availability
- No usage limitations or credits system
š§ Perfect for:
- #DataScience projects
- Document processing pipelines
- #AI training data preparation
- Automated workflow systems
Source:
https://github.com/deepset-ai/pymupdf4llmhttps://pypi.org/project/pymupdf4llm/Published at
2024-11-11 14:59:11Event JSON
{
"id": "f1ec6768c0b01839d289fae5e6ca4720fc67b6f238fcdd120d0a4b29a1ea87f6",
"pubkey": "129f83898c7008d335771fe681ecf979e7767ad958c552ff85de962ba2f775be",
"created_at": 1731337151,
"kind": 1,
"tags": [
[
"t",
"pymupdf4llm"
],
[
"t",
"pdfoftheday"
],
[
"t",
"llm"
],
[
"t",
"ai"
],
[
"t",
"python"
],
[
"t",
"opensource"
],
[
"t",
"datascience"
],
[
"proxy",
"https://social.vivaldi.net/users/michabbb/statuses/113464911533277454",
"activitypub"
]
],
"content": "š #PymuPDF4llm revolutionizes #PDFOfTheDay data extraction for #LLM applications:\n\nš Extracts structured text, tables, and images from PDFs, converting them to clean markdown format for optimal #AI processing\n\nš ļø Features include:\n- Word-by-word extraction capability\n- Custom image format \u0026 DPI settings\n- Table conversion to CSV/JSON\n- Page chunking options\n\nš» Key technical benefits:\n- Simple pip installation\n- #Python integration\n- Full #opensource availability\n- No usage limitations or credits system\n\nš§ Perfect for:\n- #DataScience projects\n- Document processing pipelines\n- #AI training data preparation\n- Automated workflow systems\n\nSource: https://github.com/deepset-ai/pymupdf4llm\nhttps://pypi.org/project/pymupdf4llm/",
"sig": "b916238e42a93f4085a7e1874d11746f06fe3dccb12c8ae5be8ad1f05139d1c373958ae1036aa37e4d52a4775b333cf350155eb275c838f330298296d8c8f9e6"
}